

Introduction

- Math learners have difficulty generalizing to novel problems despite substantial practice
- Mental models of problem-solving that learners construct reflect sensitivity to predictive relations of practice problems
- Patterns of frequency distributions in practice can cause learners to form prototype-like representations of math problems, leading to inappropriate generalization
- Examples of prototype formation in math
 - 8 is "more even" than 1132 (Armstrong et al. 1983)
 - Equilateral triangles are "best" triangles (Knuth et al. 2012)
- Practice experiences that highlight quantitative relations may protect learners against forming prototype representations and making generalization errors

Hypotheses

- 1. Symbolic practice will lead to prototype formation, resulting in more errors on low-frequency and lure problems
- 2. Grounded practice will insulate learners from forming prototypes, leading to fewer errors on all problems, including lures
- 3. Grounded practice will yield richer representation of problem structure, leading to better transfer on problems with novel quantities

Practice Makes Imperfect How Problem Distribution Can Lead to Prototype Formation

April D. Murphy¹, Rebecca A. Boncoddo², Andrew G. Young¹ ¹University of Wisconsin-Madison, ²Central Connecticut State University

Method

Participants

60 adult undergraduates at UW-Madison

Procedure

Participants played a computer-based math game using base-8 alphabetic addition, and were randomly assigned to a condition that either emphasized quantitative relationships between the symbols (Grounded) or a symbolonly problem structure (Symbolic).

Training Phase

Participants were trained on practice problems with unequal frequency distributions.

- High-frequency problems: repeated 20x
- Low-frequency problems: repeated 5x

Testing Phase

- Familiar problems (High- & Low-frequency)
- Lure problems: contained addend from highfrequency problems
- Novel problems

Monster Ice Cream Game

Results-Adults

Training Phase

Frequency effect for Symbolic training only

• Grounded training more accurate overall

Knuth, E. J., Kalish, C. W., Ellis, A., Williams, C., & Felton, M. (2012). Adolescent Reasoning in Mathematical and Non-Mathematical Domains: Exploring the Paradox. In V. F. Reyna, S. B. Chapman, M. R. Dougherty & J. Confrey (Eds.), *The Adolescent Brain: Learning*, Reasoning, and Decision Making. Washington, DC: APA.

Symbolic Training: ~2x as likely to make a lure response

Results-Children

Pilot Data

42 second-grade children

Practice and test on typical arithmetic problems

Participants in the Grounded practice condition were equally successful on both frequent and novel quantity problems.

Future Directions

Manipulate problem types $(e.g., 19 + 6 = ? \rightarrow 19 + ? = 25)$

• Evaluate format transfer: Does Grounded training help Symbolic problem-solving?

• Train children on more difficult problems to avoid familiarity effects

References

Armstrong, S. L., Gleitman, L. R., & Gleitman, H. (1983). What some concepts might not be. Cognition, 13(3), 263-308.

To request a reprint: Leave your email address and we'll mail a copy OR email aprildmurphy@gmail.com

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Award # R305A130082 (to CW Kalish). The opinions expressed are those of the authors and do not represent views of the U.S. Department of Education.