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Abstract 

Previous studies on numeric cognition have focused primarily 
on magnitude, based on its role as a core feature of number 
knowledge. In this paper, we report the results of three 
experiments investigating adults’ sensitivity to properties of 
number apart from magnitude. In Experiment 1, we use a 
triadic judgment task to replicate a classic study of number 
properties. In Experiment 2, we compare these representations 
among expert and non-expert groups. In Experiment 3, we 
examine whether instruction can tune representation of 
number properties. Results indicate that the triadic 
comparison task is a reliable method of assessing sensitivity 
to number properties. We found that magnitude is difficult to 
suppress among non-experts, who are primarily attuned to 
magnitude and parity. Mathematically sophisticated 
participants were sensitive to a range of number properties 
compared with the non-expert group. We discuss implications 
for theories of number concepts and their relation to special 
populations.  

Keywords: number representation, magnitude, individual 
differences 

Introduction 
Psychological approaches to number knowledge often focus 
on the representation of magnitude, under the assumption 
that the semantic core of number knowledge is quantity 
(Booth et al., 1999, Booth & Seigler 2008, Dehaene et al. 
1993, Fias et al. 1996). Numbers have many properties 
beyond quantity, however. The number 3, for example, can 
be prime, odd, or a factor of 27; it can call to mind a set of 
triplets, a bronze medal for third place, or a triangle. Though 
research on the representation of quantity has advanced 
rapidly in recent years, less is known about whether and to 
what extent aspects of number knowledge beyond 
magnitude shape number concepts. 

A classic study by Shepard, Kilpatrick, and 
Cunningham (1975) probed adult representation of number 
properties using multidimensional scaling. Adults were 
asked to make pairwise similarity judgments among the 
single-digit numbers 0-9 presented in various forms (e.g., 
digits, number words, dot arrays). The results of a 
multidimensional scaling on these data indicated that, in 
addition to magnitude, features such as parity and powers of 
two and three were used to make the judgments. The 
implications of these findings for theories of number 
concepts remains unclear, however. Observations were only 
collected from 4 participants, all colleagues or students of 
Shepard at Stanford who likely had substantial expertise in 
mathematics. Do non-magnitude properties of numbers 

shape number concepts broadly for people in our society, or 
does sensitivity to such properties only arise as a 
consequence of specialized learning and expertise? 

A few studies have approached this question in 
cognitive development. Miller & Gelman (1983) used a 
explored children’s and adults’ sensitivity to the properties 
identified in Shepard et al. (1975), using a triadic judgment 
task whereby subjects rated the most similar of 3 numbers 
printed on either cardboard wheels (for children) or index 
cards (for adults). In this study they found sensitivity to both 
magnitude and parity relations among adults and 6th gade 
children, while kindergarteners and 3rd grade children were 
only sensitive to magnitude. Similarly, Berch et al. (1999) 
found that children from 4th grade onward were reliably 
sensitive to parity in addition to magnitude.  

To our knowledge, however, the original results 
identified by Shepard et al. (1975) have not been replicated 
in a sample of adults who are both representative of a 
college-educated population and naïve to the experimental 
goals. Yet the questions about the structure of number 
concepts are important for understanding the origins and 
nature of numeracy in human cognition. The literature’s 
current focus on number magnitude has been useful in 
connecting research in animal cognition, human 
development, and neural bases of number knowledge (e.g., 
Feigenson et al. 2004, Verguts & Fias 2004, Dehaene & 
Changeaux 1993, Wynn 1992, Xu & Spelke 2000, Kadosh 
et al. 2008), and one implication of this work is that 
numeracy may be grounded in an innate sense of quantity 
that is conserved across both phylogeny and ontogeny 
(Brannon & Terrace 2002). It is less easy to see how other 
number properties, such as parity or primeness, might 
connect to or emerge from sensitivity to magnitude as 
observed in non-human animals, young infants, and neural 
signals. If such properties broadly shape the relationships 
we discern amongst numbers, this suggests that there are 
important unanswered questions about the nature and 
origins of numerical concepts. 

The current study uses contemporary multidimensional 
scaling (MDS) methods to measure the similarities people 
discern amongst single-digit numbers and assess whether 
they reflect the properties identified by Shepard et al. 
(1975). Whereas these authors used overt similarity ratings 
and classical MDS to generate embeddings, we employ a 
triadic matching task in which participants must decide 
which of two items is more similar to a third reference item, 
and estimate embeddings with non-metric MDS. In 



Experiment 1 we assess whether this approach can replicate 
the original findings, focusing on judgments of colleagues 
with expert mathematical knowledge. We then compare the 
structures uncovered by these methods in groups of 
university undergraduates and in another special population 
with expert mathematical knowledge, graduate students in 
computer science and mathematics. Finally, we assess 
whether the structures revealed in these studies change or 
remain the same when participants are explicitly instructed 
to ignore number magnitude when making their decisions. 
The results allow us to assess whether magnitude is the 
nucleus of numeric representation in university-educated 
adults broadly speaking, and whether the saliency of 
magnitude can be shifted either by expertise or through 
explicit task instruction.  

 
Experiment 1 

The aim of Experiment 1 was to assess whether we could 
replicate the results of Shepard et al. (1975) using triadic 
comparisons and non-metric MDS to estimate the similarity 
structure among single-digit numbers. To this end we 
imitated Shepard et al.’s strategy of studying number 
concepts in colleagues with extensive mathematical 
knowledge. Sixteen participants, all graduate students, 
research assistants, or faculty at the University of 
Wisconsin-Madison, participated in the task. 

Triadic comparison task 
The experiment was conducted on a computer using a Web-
based paradigm that allows participants to visit a URL and 
complete an experiment from a Web browser. After logging 
in, subjects read an introduction to the experiment which 
pointed out that numbers can have many properties such as 
even or odd, large or small, prime, multiples of 3 and so on. 
Participants were then instructed that, on each trial of the 
study, they must decide which of two numbers is most 
similar to a third, taking into account everything they know 
about the three numbers. The experiment then randomly 
selected three single-digit numbers (0-9) without 
replacement and presented them on a computer screen. The 
reference number was presented at the top of the screen, and 
the two other numbers were presented below on the right or 
left side of the screen. Participants made judgments by 
pressing the left or right arrow key that corresponded to 
their choice, after which the next triad would automatically 
appear. Participants were told to complete as many 
judgments as they could in 10 minutes. At the end of the 
time limit, the experiment automatically terminated and a 
debriefing message was displayed.  

To investigate the structure underlying participant 
judgments, we used a form of non-metric multidimensional 
scaling (non-metric MDS) to generate several low-
dimensional representations of the response data. This was 
accomplished by using the participants’ responses to situate 
the 10 target numbers in a low-dimensional space, which we 
will refer to as an embedding. In this space, the distance 

among the targets directly corresponds to their similarity. 
 The non-metric MDS embedding was computed using 
stochastic gradient descent on a hinge-loss objective 
function [see NEXT website for implementation details: 
https://next.discovery.wisc.edu].  The computations are 
performed across non-aggregated response data in a 
different random order each time until the embedding 
reaches a steady state whereby additional iterations have 
minimal influence on the positions of the targets and the 
overall error of the embedding. Reliability is evaluated by 
testing the model results on a hold-out portion of the data 
that was not used to generate the original embedding.   

Again following Shepard et al. (1975), we simply 
inspected the resulting embedding for evidence of 
sensitivity to the properties explicitly identified in their 
study—magnitude, parity, powers of two, powers of three, 
and the special status of zero—as well as an additional 
important property, primeness. 

Figure 1 shows the resulting embedding, which closely 
replicates the original findings. The embedding clearly 
expresses dimensions that capture number magnitude and 
parity, and there exist linear planes in the 2D space that 
separate powers of 2 from other numbers, zero from other 
numbers, and primes from non-primes. The only non-
magnitude property reported in the original study that is not 
clearly reflected in this scaling is powers of 3. The study 
thus validates the triadic comparison method as capable of 
revealing non-magnitude properties in number concepts of 
expert participants—but as in the original study it remains 
unclear whether these results arise from expertise 
specifically or reflect aspects of number concepts in a 
broader population. 

 
Figure 1 

2D solution of Shepard et al. (1975) replication 



Experiment 2 
The goal of experiment 2 was to compare the structure of 
number concepts in a sample of university undergraduates 
not necessarily possessing expert math knowledge to that 
elicited from a new sample of math experts who were naïve 
to the experimental goals, all graduate students in math and 
computer science. The central question was whether the 
same properties of numbers would be equally well 
represented in the two groups. We adopted two different 
approaches to testing this question quantitatively.  

Participants and Task 
The experiment was conducted in a computer lab in the 
Psychology department at the University of Wisconsin-
Madison. Participants consisted of 23 undergraduate 
students and 9 Computer Science and Mathematics graduate 
students at the University of Wisconsin-Madison. 
Participants were recruited from the Psychology department 
volunteer subject pool, as well as email solicitations to the 
Computer Science and Mathematics departments.  

Participants completed the same task with the same 
instructions as in Experiment 1. Each participant made 100 
similarity judgments, which took between 15-20 minutes. 
Upon reaching the trial limit, the experiment automatically 
terminated and a debriefing message was displayed. 

Analysis 
To compare the richness of the structures underlying expert 
and novice judgments, we computed separate embeddings in 
1-4 dimensions for each group using the same method as 
Experiment 1. This allowed us to assess whether the 
underlying dimensionality of representations governing 
number judgments is similar or different in novices versus 
experts. If experts possess richer knowledge about number 
attributes, their performance should be best fit by a richer 
(higher-dimensional) underlying representation.  
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Figure 2  

Error curves for non-metric MDS  embeddings in 
Experiment 2  

 
Figure 2 indicates the relationship between training and 
testing error across the 1D-4D solutions.  The relatively flat 
error curve for the non-expert group suggests that these data 
may be best fit to a 1D solution; that is, a single numeric 
property may be the only reliable dimension to which this 

group is sensitive. For the expert group, the error is lowest 
in the 4D solution, indicating that these participants may be 
sensitive to a broader range of numeric properties. 

Second, for each group we used logistic regression as a 
linear classification model to assess whether particular 
number properties are present in the 2D embeddings 
estimated for each group. Because our pilot study, as well as 
prior research (e.g. Dehaene et al., 1993), indicated that 0 is 
a special class of number for which discrimination of non-
magnitude properties may be difficult, we restricted our 
classification model to numbers 1-9. The classifier was 
trained to discriminate numbers possessing or not 
possessing a numeric property as a function of the 
coordinate vectors on each dimension of the 2D scaling. We 
used leave-one-out cross-validation to evaluate the 
predictive accuracy of the model, doing this for all 9 digits; 
thus, in each iteration, the model was trained on 8 digits and 
tested on the 9th. For instance, to assess whether an 
embedding contains reliable information about parity, the 
classifier was trained to discriminate even from odd 
numbers for the digits 1-8, and the resulting model was used 
to classify the digit 9.  

 

  

 
 

Figure 3 
2D solution of Experiment 2 data, and cross-validation 
model accuracy across categories and expertise groups 

 



This process was repeated, omitting each digit from the 
training set once, and the total accuracy of the classifier 
across all 9 runs was used as a measure of the degree to 
which parity is expressed in the embedding. Using this 
procedure, we assessed four number properties, which split 
the 9 digits into two roughly equal-sized classes: magnitude 
(large vs. small), parity, primeness, and multiples of three. 

Figure 3 illustrates the 2D solution from non-metric 
MDS and the cross-validation classification accuracy for 
each of the four categories across the expert and non-expert 
groups. 
 

Results 
Our objective in this study was to evaluate whether the four 
properties of numbers we identified in the pilot study would 
be well represented across both expert and non-expert 
groups. Our quantitative approach made use of cross-
validation procedures with both the non-metric MDS and 
logistic regression classifier to support model accuracy and 
avoid overfitting the data.  

In the non-expert group, our leave-one-out cross-
validation indicated that the most reliably classified feature 
was magnitude, with a classification accuracy of 77%, as 
visual inspection of the 2D embedding suggests. Other 
features were less well classified, with parity surprisingly 
being classified with 0% accuracy. Prime and multiples of 3 
were both classified with 33% accuracy, indicating that few 
participants consistently used these dimensions to determine 
conceptual similarity among the numbers.  

In the expert group, classification was most reliable for 
parity, with an accuracy of 77%. Primeness was classified 
with an accuracy of 66%, and it is notable that magnitude 
was not as reliable a predictor with classification of 44%. 
Visual inspection of the 2D embedding suggests it is 
plausible that the experts may have also used powers of two 
in addition to or instead of parity to make similarity 
judgments. Classification accuracy for the multiples of three 
category was only slightly better in the expert group, at 
44%.  

These results bring to light two interesting findings. 
First, the properties of numbers which were strongly 
identified in Shepard et al. (1975) and in Experiment 1 were 
not consistent among the experiment-naïve mathematics 
experts. Second, only the dimension of magnitude  was 
salient among the non-expert group, while parity was most 
reliable in the expert group—this supports prior research on 
aspects of number knowledge (Miller & Gelman 1983, 
Dehaene et al., 1993). However, there was only weak 
representation of other properties across both expert and 
non-expert groups.  

This raises the question of whether the saliency of 
magnitude, particularly among the non-expert group, 
suppressed other aspects of number besides parity. 
Additionally, we hypothesized that there may high 
variability in the experts’ sensitivity to various properties of 

numbers, which led them to develop different strategies for 
judging similarity.  

To address these questions, we conducted a third 
experiment in which we explicitly instructed participants to 
ignore magnitude when making similarity assessments.  
 

Experiment 3 
Experiment 2 indicated that judgments among the four 
number categories were represented unequally across the 
undergraduate sample and the expert sample. We 
hypothesized that because magnitude is so central to number 
knowledge, this dimension may need to be explicitly 
suppressed to reveal alternate aspects of number.   In this 
experiment, we gave participants instructions to avoid using 
magnitude relations when making similarity judgments of 
the stimuli. Our objective was to tune the strength of non-
magnitude number representations and evaluate the 
consistency of these across expertise groups.   

Participants and Task 
The experiment was conducted in a computer lab in the 
Psychology department at the University of Wisconsin-
Madison. Participants consisted of a second group of 23 
undergraduate students and 8 Computer Science and 
Mathematics graduate students at the University of 
Wisconsin-Madison, who had not previously participated in 
the experiment. Participants were recruited from the 
Psychology department volunteer subject pool, as well as 
email solicitations to the Computer Science and 
Mathematics departments.  

Participants completed the same computer-based task as 
in Experiment 1. The experiment instructions were modified 
to indicate that participants were to not think about 
magnitude when making judgments.  Each participant made 
100 similarity judgments, which took between 15-20 
minutes. Upon reaching the trial limit, the experiment 
automatically terminated and a debriefing message was 
displayed. 

Analysis 
As with Experiment 2, we used non-metric MDS to 
compute separate embeddings in 1-4 dimensions for each 
group using the same method as Experiments 1 and 2. 
Figure 4 indicates the relationship between training and 
testing error across the dimensions.  In contrast to 
Experiment 2, the error curve for the non-expert group 
flattened out around 3 dimensions, suggesting that ignoring 
magnitude may successfully persuade participants to attend 
to alternative features. For the expert group, the error is 
again lowest in the 4D solution. 
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Figure 4  

Error curves for non-metric MDS  embeddings in 
Experiment 3 

 
We used logistic regression as a classifier to evaluate 
whether the four number categories identified in Experiment 
2—prime, parity, magnitude, and multiples of 3—would be 
present in the 2D embeddings estimated for each group in 
the ignore-magnitude condition.  

Figure 5 illustrates the 2D solution from non-metric 
MDS and cross-validation classification accuracy for each 
of the four categories across the expert and non-expert 
groups. 

Results 
Our aim in Experiment 3 was to constrain the influence of 
magnitude on participants’ judgments of number similarity 
in the triadic comparison task. By directing participants to 
avoid using magnitude, and instead asking that they exercise 
their knowledge of other types of number relations, we 
expected that the saliency of non-magnitude properties of 
numbers would be revealed.    

Results for the non-expert group were surprising. The 
leave-one-out cross-validation indicated that, rather than 
suppressing magnitude’s importance, it remained reliably 
classifiable with an accuracy of 88%. Importantly for our 
hypothesis however, activating non-magnitude knowledge 
through instruction allowed parity to be perfectly classified 
at 100%; this is particularly evident in the 2D visualization.  

Our hypothesis was also well supported within the expert 
group, with all three non-magnitude properties classified 
reliably better than in the open instructions condition. The 
multiples of three category was perfectly separable with 
100% accuracy, while parity representation was also well 
classified with an accuracy of 88%. Primes and magnitude 
were classified at 66% accuracy, changing little from the 
open instructions condition.  

The results of Experiment 3 provide compelling evidence 
of the role of both instruction and expertise in guiding 
representation of non-magnitude properties of numbers. We 
note that, while further representational complexity may be 
sacrificed in the expert group by compressing information 
from higher dimensions into a 2D embedding, the results 
from this potentially more coarse approach remain 
encouraging with regard to our hypotheses. 

 

  

 
 

Figure 5 
2D solution of Experiment 3 data, and cross-validation 
model accuracy across categories and expertise groups 

 

General Discussion 
These findings provide important implications for the study 
of number representation and expertise. While Shepard et al. 
(1975) claimed that adults are broadly sensitive to several 
non-magnitude properties of number, we found this claim to 
be supported only among highly trained experts. 
Furthermore, when non-metric multidimensional scaling 
and logistic regression are used to evaluate the inherent 
dimensionality and classification accuracy of similarity 
judgments, we can address questions of number knowledge 
more quantitatively compared with visual inspection of 
relationships in a 2D scaling.  

We found that task instructions played a role in the 
malleability of number knowledge for both experts and non-
experts. With open instructions, non-experts were most 
reliably sensitive to magnitude, supporting prior research in 
these domains (Miller & Gelman 1983, Dehaene et al. 
1993), while experts were most reliably sensitive to parity. 
When asked to suppress knowledge of magnitude relations, 
non-experts had difficulty doing so, even while also 
accurately discriminating parity. In contrast, the ignore-
magnitude instructions allowed experts to improve 



reliability at uncovering the conceptual structure of all three 
non-magnitude properties.  

Although we assumed that features related to primeness, 
parity, or multiplication should be commonly known and 
easily accessed by both expertise groups, the college-level 
mathematics skills possessed by the non-expert group did 
not necessarily predict an ability to make similarity 
judgments based on these features. Additionally, while 
domain expertise may permit greater flexibility in shifting 
representation away from magnitude, even then magnitude 
must be explicitly suppressed to allow other features to 
reliably surface. 

Non-magnitude properties of number represent highly 
abstract conceptual knowledge, and these studies address 
classical findings while taking steps towards investigating a 
relatively under-studied domain. While our results indicate 
that these aspects of number knowledge can be highly 
variable depending on individual expertise and task 
demands, future research is needed to fully explore the 
consequences of these findings for number cognition more 
broadly.  
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